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Aumann (1995) showed that for games with perfect information common knowledge
of substantive rationality implies backward induction. Substantive rationality is defined
in epistemic terms, that is, in terms of knowledge. We show that when substantive
rationality is defined in doxastic terms, that is, in terms of belief, then common belief of
substantive rationality implies backward induction. Aumann (1998) showed that material
rationality implies backward induction in the centipede game. This result does not hold
when rationality is defined doxastically. However, if beliefs are interpersonally consistent
then common belief of material rationality in the centipede game implies common belief of
backward induction.
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1. Introduction

Common knowledge and common belief of rationality. Aumann (1995) proved that in perfect information games common
knowledge of substantive rationality implies backward induction. Common knowledge of material rationality was shown
in Aumann (1998) to imply backward induction in the centipede game. The language and model used in these papers
are epistemic rather than doxastic, that is, they are formulated in terms of knowledge and not belief. Obviously, common
knowledge is an epistemic notion. But even the notion of rationality is defined in both papers in terms of knowledge. For
a player to be considered substantively rational it is required that for each vertex of hers she does not know that she could
increase her conditional payoff at the vertex by deviating from her strategy. To be considered materially rational it is enough
that this holds only for vertices that are reached.

The assumption of common knowledge is very demanding, not only because of the ever-increasing hierarchy of knowl-
edge about knowledge, but also because of its epistemic nature. Knowledge, by virtue of being necessarily true, relates
the internal realm of the mind and the outside world in mysterious ways, and more so where knowledge of knowledge is
concerned. The idea that one does not err about the minds of others is mind boggling. No wonder that many researchers
have studied the consequences of common belief of rationality rather than those of common knowledge of rationality.1

Aumann (1995) tried to derive backward induction using common belief but clarified that the approach of his paper “does
not work with probability 1 belief”, and claimed that he could not fix problems with off-path behavior that are related to
such belief. Again, Aumann (1998) emphasized that the result was proved for knowledge and not for belief. We show in
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1 Dozens of articles deal with the characterization of backward induction, the definition of rationality, and the implications of common knowledge and

common belief of rationality. Comparing these articles is a daunting task, as the models used by different scholars vary vastly. A comparison of the results
presented here to this literature would be beyond the scope of this paper. For a comprehensive survey of models of belief and knowledge and their
applications to game theory, see Battigalli and Bonanno (1999). See also the survey on works on backward induction in Perea (2007).
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Example 1 below, that indeed, the main theorems of both papers do not hold when the weaker assumption of common
belief of rationality is made rather than that of common knowledge of rationality.

Rationality defined in terms of belief. The reason Aumann failed to derive his results for common belief is that he applied
common belief to rationality defined in terms of knowledge. Here we reexamine these results in purely doxastic language
and model. This means, of course, that we have at our disposal only common belief and not common knowledge. However,
it also means that rationality should be defined in terms of belief and not in terms of knowledge. This is done simply by
replacing knowledge by belief in the definitions of rationality in Aumann (1995) and (1998). Thus, we say that a player is
substantively rational doxastically if for each vertex of hers she does not believe that she could increase her conditional payoff
at the vertex by deviating from her strategy, and materially rational doxastically if this is required only for vertices that are
reached. The rationality in Aumann (1995) and (1998) would be referred to as epistemic rationality. With this change we
state and prove the purely doxastic analogue of Aumann (1995):

Common belief of doxastic substantive rationality implies backward induction.

We now turn to doxastic material rationality. As we show in Example 2 below, common belief of this rationality does not
imply backward induction in the centipede game. A weaker version of this claim still holds when beliefs are interpersonally
consistent. By this we mean that each player believes not only that her beliefs are correct (which follows from the axioms
of belief) but also that all players’ beliefs are correct. We state and prove:

When beliefs are interpersonally consistent, common belief of doxastic material rationality implies common belief of
backward induction.

The doxastic model we use consists of a state space with a belief operator for each player. We describe such models
and characterize them axiomatically in terms of the properties of the belief operators. Such models can arise from partition
models of knowledge in which each state is associated with probability functions that describe the probabilistic beliefs of
the players. The belief operators in this case are the operators of belief with probability 1.

Comparing various notions of rationality. In a belief space each belief operator can be associated with a unique knowledge
operator such that knowledge implies belief, and beliefs are known. Thus, we can compare doxastic and epistemic notions
of rationality in the same model. Moreover, we can endow the belief space with probabilistic beliefs as explained above.
With the probabilistic structure we can also define rationality as maximization of expected payoff, which we will refer to
as rationality by expectation. The comparison of rationality by expectation with doxastic and epistemic substantive rationality
in this model is straightforward. When a player maximizes her expected conditional payoff at a vertex of hers, then she
cannot possibly believe with probability 1 that she can increase her conditional payoff by deviating from her strategy. And
if she cannot believe this, then obviously she cannot know it. Thus, rationality by expectation implies doxastic substantive
rationality, which implies epistemic substantive rationality. Therefore, the result of Aumann (1995) and its doxastic analogue
here each imply that common belief of rationality by expectation implies backward induction. This observation was made
in Aumann (1995) for epistemic substantive rationality. It explains why the epistemic model in Aumann (1995) and the
doxastic model here do not make any use of probabilistic beliefs. Note, that the epistemic theorem of Aumann (1995) and
the analogous doxastic theorem here are incomparable, as common belief is a weaker condition than common knowledge,
but doxastic substantive rationality is stronger than epistemic rationality. Unlike the case of substantive rationality, the
doxastic and epistemic versions of material rationality are not comparable as we explain later.

Conclusions. The results here show that in the model used in Aumann (1995) and (1998) knowledge and common knowl-
edge are not crucial for the derivation of backward induction. In the model of Samet (1996), which formally introduces
counterfactual strategic thinking, common knowledge of rationality is not sufficient to obtain backward induction. It seems
then, that the variance in conclusions reached in different models of perfect information games is not related to the use
of knowledge or belief. In accordance with previous findings, at least as far as game theoretic analysis is concerned, belief
approximates knowledge and with the appropriate care can substitute for it.2

2. Common knowledge of epistemic rationality

We use the setup of Aumann (1995) and (1998). We consider a game of perfect information in general position. For such
a game the result of backward induction is uniquely defined. The set of player i’s vertices is denoted by V i , and the set of
i’s strategies is Si . The set of strategy profiles is denoted by S . For a vertex v , hv

i (s) is i’s conditional payoff at v for s ∈ S .
Knowledge is expressed in a standard partition model. The set of states is Ω . A knowledge structure is given by a set (Πi)i

of partitions of Ω . The knowledge operator Ki , associated with the partition Πi , is defined by Ki E = {ω | Πi(ω) ⊆ E}, where

2 See, e.g., Monderer and Samet (1989).
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Πi(ω) is the element of Πi that contains ω. The event that all know E is KE = ⋂
i Ki E . The event CKE , that E is common

knowledge, is the event that all know E , all know that all know E and so on. Thus, CKE = ⋂
n�1 Kn E , where K n is the nth

power of K . Models of belief are described in the sequel.
A function s :Ω → S describes the strategy profile at each state. Player i’s strategy function si is measurable with

respect to her partition Πi , which means that in each state each player knows his strategy. Events defined by a condition
are described by enclosing the condition in square brackets. Thus, [si = si] consists of all states ω for which si(ω) = si .
The event [hv

i (s; ti) > hv
i (s)] consists of all states ω for which hv

i (s(ω); ti) > hv
i (s(ω)) where (s(ω); ti) is the strategy profile

obtained by changing i’s strategy si(ω) to ti .
A standard assumption is made in this setup, that each player knows her strategy.

Knowing one’s actual strategy. Each player knows she is playing the strategy she actually plays. That is,

[si = si] ⊆ Ki[si = si] for each i and si ∈ Si . (1)

Rationality of a player is defined in terms of her conditional payoff function at vertex v , hv
i (s). Since rationality is defined

in Aumann (1995) and (1998) in terms of knowledge we label them epistemic.

Epistemic substantive rationality. Player i is substantively rational epistemically if she does not know of any strategy of hers
that can increase her conditional payoff at any of her vertices. Thus the event that i is substantively rational epistemically
is:

Res
i =

⋂

v∈V i

⋂

ti∈Si

¬Ki
[
hv

i (s; ti) > hv
i (s)

]
. (2)

The event Res = ⋂
i Res

i , is the event that all players are substantively rational epistemically.

Epistemic material rationality. Player i is materially rational epistemically if for each of i’s vertices v and strategy ti , either
i knows that v is not reached, or else, i does not know that ti guarantees her a higher conditional payoff at v when v is
reached. We denote by Ω v the event that vertex v is reached. The event Rem

i that player i is materially rational epistemically
is an exact rendering of this sentence to the language of the model.

Rem
i =

⋂

v∈V i

⋂

ti∈Si

(
Ki¬Ω v) ∪ ¬Ki

(¬Ω v ∪ [
hv

i (s; ti) > hv
i (s)

])
. (3)

The event Rem = ⋂
i Rem

i , is the event that all players are materially rational epistemically.3

We denote by I the event that the backward induction path is induced by the strategy profile. Common knowledge of
rationality has the following implications.

Theorem 1. (See Aumann (1995).) For generic games, CKRes ⊆ I . 4

Theorem 2. (See Aumann (1998).) For the centipede game, CKRem ⊆ I .

3. Beliefs

In order to examine the implications of common belief of rationality, we first present standard models of belief.5

3.1. Belief structures

Probabilistic belief structures. A probabilistic belief structure on Ω is a set of type functions (ti)i on Ω . For each i and ω, ti(ω),
the type of i at ω, is a probability function on Ω , representing i’s beliefs at ω. Let Πi be the partition of Ω into sets of
states with the same values of ti , that is, Πi(ω) = {ω′ | ti(ω

′) = ti(ω)}. We require that for each state ω, ti(ω)(Πi(ω)) = 1,
which means that i is always certain of her type. For each i, B1

i E is the event that i is certain of E . That is, B1
i E = {ω |

ti(ω)(E) = 1}.6

3 Aumann (1998) defined ex-post material rationality in terms of ex-post knowledge operators at vertex v , and proved Theorem 2 for common knowledge
of this type of rationality. However, Samet (2011) showed that ex-post knowledge is not required for Aumman’s definition. Moreover, the event that a player
is materially rational, as defined here, is the event that the player knows that she is ex-post materially rational. In particular, common knowledge of material
rationality and common knowledge of ex-post material rationality are one and the same event.

4 Aumann (1995) proves that common knowledge of substantive rationality implies the backward-induction strategies but states the weaker claim that it
implies the backward-induction path.

5 Our presentation avoids the modal logic apparatus and uses set theoretic terminology instead. For a comprehensive discussion of these models from a
modal logic perspective, see Battigalli and Bonanno (1999).

6 The operator B1
i is the 1-belief operator in the family of p-belief operators, Bp

i , studied in Monderer and Samet (1989).
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Since we are interested only in the belief operators B1
i , which are defined in terms of events of probability 1, we can use

a simpler structure which is induced by the probabilistic belief structure.

Belief structures. A belief structure on Ω is a set of pairs ((Πi,bi))i , where Πi is a partition of Ω , and bi is a function,
bi :Ω → 2Ω \ {∅}, which is measurable with respect to Πi and for each ω, bi(ω) ⊆ Πi(ω). We associate with the belief
structure belief operators Bi defined by Bi E = {ω | bi(ω) ⊆ E}. We think of bi(ω) as the set of states that are considered
possible by i at ω. By the measurability assumption, this set of states is considered possible in all the states in Πi(ω). At
each state in Πi(ω) \ bi(ω), i is wrong thinking that the state lies in bi(ω).

Obviously, a probabilistic belief structure on Ω induces a belief structure on Ω , where Πi is the partition of Ω into i’s
types, and bi(ω) is the set of states in Πi(ω) of positive ti(ω) probability. Conversely, each belief structure on Ω is induced
by some probabilistic belief structure on Ω .

Claim 1. Let (B1
i )i be the operators associated with a probabilistic belief structure on Ω . The operators (Bi)i that are associated with

the induced belief structure, satisfy Bi = B1
i .

It is easy to see that each of the belief operators Bi associated with a belief structure satisfies the following four axioms.7

(B1) B(E ∩ F ) = BE ∩ BF (distribution),

(B2) BE ⊆ ¬B¬E (consistency),

(B3) BE ⊆ BBE (positive introspection),
(B4) ¬BE ⊆ B¬BE (negative introspection).

The distribution of belief over conjunction, as well as positive and negative introspection are well-known axioms of epis-
temic logic. Axiom B2 requires that belief is consistent in the sense that it is impossible to believe an event and its negation.

Note, that applying axiom B1 to events E ⊆ F results in BE = BE ∩ BF which implies BE ⊆ BF . Thus, the operator B is
monotonic.

These axioms are not only satisfied by the belief operators in belief structures, but also characterize them as we state
next.

Proposition 1. A set of operators Bi : 2Ω → 2Ω satisfy the axioms B1–B4 if and only if there exists a belief structure on Ω such that
the belief operators associated with it are the operators Bi .

3.2. Belief and knowledge

Belief is one axiom short of knowledge. An operator K on Ω is a knowledge operator derived from a partition of Ω if
and only if it satisfies the four axioms of belief and the truth axiom8:

(K1) KE ⊆ E (truth)

The partitions Πi of a belief structure define knowledge operators Ki .9 These operators satisfy for each E ,

(KB1) KE ⊆ BE
(KB2) BE ⊆ KBE

That is, knowledge implies belief and belief implies knowledge of the belief.10

The common belief operator is defined similarly to the common knowledge operator. We denote by BE the event that all
believe E , that is, BE = ⋂

i Bi E , and by Bn , B to the power of n. The common belief operator is defined by CBE = ⋂
n�1 Bn E .

Since Ki E ⊆ Bi E , and as Ki and Bi are monotonic operators it follows that CKE ⊆ CBE . Thus, common belief is a weaker
condition than common knowledge.

7 In modal logic, axioms B1, B2, and B3 are usually denoted by D, 4, and 5, correspondingly. Distribution in modal logics is usually required over material
implication, rather than conjunction, and is denoted by K. Thus, the logic of belief is referred to as the KD45 logic. Axiom B1 implies axiom K. In the logic
KD45, axiom K implies B1 by virtue of the generalization inference rule. As we see, DK45 is also the logic of certainty, or belief in probability 1.

8 By adding the truth axiom we can omit the axioms of contradiction and positive introspection which are derived from the axioms of distribution,
negative introspection and truth.

9 Each belief structure defines a unique knowledge operator that satisfies axiom KB1 and KB2 below. We refer to this as the explicit definability of
knowledge in terms of belief. However, it is impossible to define the knowledge operator explicitly in terms of the belief operator. For an explanation of the
difference between the two types of definability, see Halpern et al. (2009).
10 If operators Ki satisfy these axioms then they are necessarily defined by the partitions Πi . The first axiom guarantees that each partition Πi is at least

as fine as the partition associated with Ki and the second that it is at least as coarse.
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4. Common belief of doxastic rationality

Theorems 1 and 2, where rationality is defined in terms of knowledge, cannot be strengthened by replacing common
knowledge of rationality by common knowledge of belief, as is shown in Example 1 below. In order to formulate doxastic
versions of these theorems, we assume that our language has at its disposal only statements about belief and not about
knowledge. Thus, we first need to replace the operator Ki with Bi in (1). The assumption of knowing one’s strategy, in (1),
becomes,

Believing one’s actual strategy. Each player believes she is playing the strategy she actually plays. That is, for each i,

[si = si] ⊆ Bi[si = si] for each i and si ∈ Si . (4)

This seems to be a relaxation of (1), since E ⊆ Bi E does not imply E ⊆ Ki E where Ki is the unique knowledge operator
associated with Bi . However, since (4) is required for all strategies si , it follows that (4) does not relax (1), as we state next.

Proposition 2. Condition (4) of believing one’s actual strategy is equivalent to condition (1) of knowing one’s actual strategy.

The doxastic analogue of (2) is as follows:

Doxastic substantive rationality. The event that i is substantively rational doxastically is:

Rds
i =

⋂

v∈V i

⋂

ti∈Si

¬Bi
[
hv

i (s; ti) > hv
i (s)

]
. (5)

As before, doxastic substantive rationality holds at Rds = ⋂
i Rds

i .
By axiom KB1, doxastic substantive rationality is stronger than its epistemic version. That is, Rds ⊆ Res. It turns out that

this strengthening compensates for the weakening of common knowledge, and the result is that Theorem 1 can be stated
mutatis mutandis in its doxastic version.

Theorem 3. For generic games, CBRds ⊆ I .

The doxastic analogue of (3) is as follows:

Doxastic material rationality. The event that i is materially rational doxastically is:

Rdm
i =

⋂

v∈V i

⋂

ti∈Si

(
Bi¬Ω v) ∪ ¬Bi

(¬Ω v ∪ [
hv

i (s; ti) > hv
i (s)

])
. (6)

Doxastic material rationality is the event Rdm = ⋂
i Rdm

i .
In contrast to the case of substantive rationality, the doxastic version of material rationality is not stronger than the

epistemic one. It is possible that doxastic material rationality holds true by virtue of Bi¬Ω v being true for some vertex v
while ¬Bi(¬Ω v ∪ [hv

i (s; ti) > hv
i (s)]), and a fortiori ¬Ki(¬Ω v ∪ [hv

i (s; ti) > hv
i (s)]), are false. It is possible in this case, that

Ki¬Ω v is false, and as a result epistemic material rationality does not hold. Example 2 below demonstrates that a doxastic
version of Theorem 2 is false. However, under the condition that beliefs are interpersonally consistent, as defined below, we
can state a weaker version of this theorem.

Theorem 4. Assume that beliefs are interpersonally consistent. Then, for the centipede game, CBRdm ⊆ CBI .

4.1. Interpersonal consistency

The truth axiom states that knowledge is correct in the sense that if E is known it must hold. It can also be written
equivalently as ¬KE ∪ E = Ω , which says that the event “if E is known it holds” is necessarily true. For a belief operator B,
¬BE ∪ E is not necessarily true (i.e., it does not have to be true in all states). However, ¬BE ∪ E is necessarily believed.

Claim 2. For each E, B(¬BE ∪ E) = Ω .

Indeed, by the monotonicity of B, B(E) ⊆ B(¬B(E) ∪ E). By negative introspection and monotonicity ¬B(E) ⊆ B(¬B(E)) ⊆
B(¬B(E) ∪ E). Thus, Ω ⊆ B(¬B(E) ∪ E).



D. Samet / Games and Economic Behavior 79 (2013) 192–200 197
Fig. 1. A three-legged centipede game.

Fig. 2. Theorems 1 and 2 fail for common belief.

Claim 2 states that each player necessarily believes that her own beliefs are correct. We say that beliefs are interperson-
ally consistent when each player necessarily believes that like her, all other players have correct beliefs. Formally, beliefs in
a belief structure are interpersonally consistent if for each i, j and E11:

(Con) Bi(¬B j E ∪ E) = Ω.

Interpersonal consistency can be expressed in terms of perceived worlds. The world perceived by i is the minimal event F
that satisfies Bi(F ) = Ω . To justify this definition, consider the family F of all events F that satisfy the equality. By axioms
of contradiction and distribution, F 	= ∅ as ¬BiΩ ⊆ Bi¬Ω = ∅. By distribution,

⋂
F∈F F ∈ F and again by the axioms of

contradiction and distribution it is not empty. This intersection is the world perceived by i.

Proposition 3. Beliefs are interpersonally consistent if and only if all players perceive the same world.

Interpersonal consistency of beliefs is related to interpersonal consistency of probabilistic beliefs. A probability p ∈ �(Ω)

is a common prior for a probabilistic belief structure (ti)i on Ω with type partitions Πi , if for each i and ω, p(Πi(ω)) > 0,
and ti(ω) = p(· | Πi(ω)). The types in a probabilistic belief structure are equivalent when the types of the players in each
state are equivalent probability functions. That is, for each ω, i j, and E , if ti(ω)(E) = 0 then t j(ω)(E) = 0.12

Proposition 4. The following three conditions are equivalent for the beliefs in a given belief structure.

1. The beliefs in a belief structure are interpersonally consistent.
2. The belief structure is induced by a probabilistic belief structure that has a common prior.
3. The belief structure is induced by a probabilistic belief structure in which the types are equivalent.

5. Examples

Example 1. The following simple example demonstrates that Theorems 1 and 2 cannot be strengthened by changing the
common knowledge events CKRem and CKRes to the possibly larger common belief events CBRem and CBRes.

Consider the three-legged centipede game in Fig. 1.
A model for this game is depicted in Fig. 2. The model describes the knowledge and belief of the the two players.

Player 2’s knowledge and belief coincide and they are described by the partition given by the circles. This player knows and
believes in each state that this is indeed the state. Player 1’s belief and knowledged are described by the boxes. The outer
box describes player 1’s knowledge, and both boxes describe player 1’s belief. This player believes in both states to be in
the second state, that is, B1{ω2} = Ω .13 The players’ strategies are written above each element of the partitions.

11 Bonanno and Nehring (1998) introduced this property under the more descriptive term “belief of no error”. We have adopted the term consistency
because it hints at the relation with consistency of probabilistic beliefs (see Proposition 4).
12 See Bonanno and Nehring (1998) for an extensive discussion of the relation between Aumann’s (1976) agreement theorem and interpersonal consistency

of beliefs.
13 See Section 3.2 for the discussion and description of models of belief and knowledge.
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Fig. 3. The doxastic version of Theorem 2 fails.

• Player 2 is substantively and materially rational epistemically at ω2, as e2 is a best response to (c1, e3).
• Player 1 does not know of any strategy that yields a higher payoff at the root (which is of course reached at both states)

because (c1, e3) is a best response to c2 which is played at ω1. Her second vertex is not reached but even there, her
strategy yields the best possible conditional payoff. Thus player 1 is substantively and materially rational epistemically
in both states.

• Obviously, player 2 is neither substantively nor materially rational epistemically at ω1.
• Thus, Rem = Res = {ω2}.
• Since B1{ω2} ∩ B2{ω2} = {ω2} it follows that CB{ω2} = {ω2} and therefore CBRem = CBRes = {ω2}.

However at ω2 the game is continued by the first player, and is terminated by the second, which is not the backward
induction outcome.

Note that player 1 is substantively and materially rational epistemically, but not doxastically. At ω2, e1 yields player 1 a
higher payoff than (c1, e3). Since player 1 believes {ω2}, she believes that the strategy c1 will yield a higher payoff when
her second vertex is reached.

Example 2. This example shows that a straightforward doxastic version of Theorem 2, the main result of Aumann (1998),
does not hold. Fig. 3 depicts a model of the game in Fig. 1. The boxes are elements of the partition of player 1, the round
figures – of player 2. The inner box and oval are the events believed by players 1 and 2, respectively. Obviously, players 1
and 2 are substantively and materially rational at ω2, both epistemically and doxastically.

Player 2 is not substantively rational doxastically at {ω0,ω1}. Indeed, she believes that player 1’s strategy is (e1, e3),
and thus her strategy is dominated by e2 at her only vertex. Therefore, {ω2} is the event of common belief of doxastic
substantive rationality, and as implied by Theorem 3, the backward induction outcome holds in this state.

In contrast, player 2 is materially rational doxastically at {ω0,ω1}, since her vertex is not reached at ω1, and therefore
she believes that her vertex is not reached. Thus, common belief of doxastic material rationality holds everywhere. However,
the backward induction outcome does not hold at ω0. Moreover, there is not even common belief that this outcome holds.

6. Proofs

Proof of Proposition 1. It is enough to prove this proposition for a single belief operator which we denote by B. It is easy
to check that a belief operator in a belief structure satisfies the axioms. We show the converse. Suppose that B satisfies the
four axioms. Let β(ω) = {E | ω ∈ BE} be the set of the events believed at ω. Let Π be the partition of Ω into subsets of
states with the same beliefs. That is, for each ω and ω′ , ω′ ∈ Π(ω) when β(ω) = β(ω′).

We prove that the partition Π can be described by,

Π(ω) =
⋂

E∈β(ω)

BE. (7)

Obviously, for each BE such that ω ∈ BE it also holds that Π(ω) ⊆ BE , which shows that Π(ω) ⊆ ⋂
E∈β(ω) BE . Conversely,

let ω′ ∈ ⋂
E∈β(ω) BE , then β(ω) ⊆ β(ω′). To show that equality in (7) holds, suppose to the contrary that for some E , ω′ ∈ BE

but ω /∈ BE . Then ω ∈ ¬BE , and by negative introspection, ω ∈ B¬BE . Thus, ¬BE ∈ β(ω) which implies that ω′ ∈ B¬BE . On
the other hand, by positive introspection, ω′ ∈ BBE . This is impossible by the contradiction axiom. The equality β(ω) = β(ω′)
implies that ω′ ∈ Π(ω), which completes the proof of (7).

Define for each ω, b(ω) = ⋂
E∈β(ω) E . We show that for each ω and E , ω ∈ BE if and only if b(ω) ⊆ E . For this we note

that by distributivity and (7),

Bb(ω) =
⋂

BE = Π(ω). (8)

E∈β(ω)
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Suppose b(ω) ⊆ E . By monotonicity Bb(ω) ⊆ BE . By (8), Π(ω) ⊆ BE and thus, ω ∈ BE . The converse implication follows
immediately from the definition of b.

Finally, we show that (Π,b) is a belief structure. By definition b is measurable with respect to Π . To see that b(ω) 	= ∅,
note that ω is in the right-hand side of (8) and therefore Bb(ω) 	= ∅. But this implies that b(ω) 	= ∅, since by the axioms of
distribution and contradiction, B∅ = B(E ∩ ¬E) = BE ∩ B¬E = ∅. By distributivity and positive introspection, it follow from
(7) that BΠ(ω) = Π(ω). Thus, ω ∈ BΠ(ω), which implies, as we have shown, that b(ω) ⊆ Π(ω).

We have shown that b satisfies the three properties required to make (Π,b) a belief structure, and that B is the operator
associated with it. �
Lemma 1. Suppose that F ⊆ Bi F . Then, for Ω̂ = F , ((Π̂i, b̂i))i , where Π̂i(ω) = Πi(ω) ∩ F and b̂i(ω) = bi(ω) for ω ∈ Ω̂ , is a belief
structure on Ω̂ . The knowledge operators K̂i and belief operators B̂i associated with this belief structure satisfy for each event E in Ω:

K̂i(E ∩ F ) = Ki(¬F ∪ E) ∩ F , (9)

B̂i(E ∩ F ) = (Bi E) ∩ F , (10)

¬B̂i(E ∩ F ) = ¬(Bi E) ∩ F , (11)

where the complement on the left-hand side of the last equality is with respect to F .

Proof. Since F ⊆ Bi F , for each ω ∈ F , bi(ω) ⊆ F . Thus, b̂i(ω) = bi(ω) ⊆ Πi(ω) ∩ F = Π̂i(ω). Hence, ((Π̂i, b̂i))i is a belief
structure on Ω̂ .

Now, K̂i(E ∩ F ) = {ω ∈ F | Π̂i(ω) ⊆ E ∩ F } = {ω ∈ F | Πi(ω)∩ F ⊆ E ∩ F } = {ω | Πi(ω) ⊆ ¬F ∪ E}∩ F = Ki(¬F ∪ E)∩ F , and
B̂i(E ∩ F ) = {ω ∈ F | b̂i(ω) ⊆ E ∩ F } = {ω ∈ F | bi(ω) ⊆ E ∩ F } = {ω ∈ F | bi(ω) ⊆ E} = {ω | bi(ω) ⊆ E} ∩ F = (Bi E) ∩ F . Thus,
F \ B̂i(E ∩ F ) = F ∩ ¬((Bi E) ∩ F ) = ¬(Bi E) ∩ F . �
Proof of Proposition 2. By axiom KB1, for each si , Ki[si = si] ⊆ Bi[si = si]. For the converse inclusion, observe that for si 	= s′

i ,[si = si]∩ [si = s′
i] = ∅. Since we have already shown that Bi(∅) = ∅ it follows by distribution that Bi[si = si]∩ Bi[si = s′

i] = ∅.
But ([si = si])⋃si∈Si

is a partition of Ω . Thus (4) implies that for each si , [si = si] = Bi[si = si]. By axiom KB2, Bi[si = si] ⊆
KiBi[si = si]. Substituting in this inclusion Bi[si = si] for the equal terms [si = si] we get the desired inclusion. �
Proof of Theorem 3. Let F = CBRds

i . By Proposition 3 in Monderer and Samet (1989),

F ⊆ Bi F ∩ Bi Rds
i . (12)

Thus, Lemma 1 applies to F . Denote by ŝ the restriction of s to Ω̂ .
We show that assuming (4), (1) and (2) hold for the knowledge operators K̂i .
By (4), Proposition 2, the monotonicity of Ki , and (9): [ŝi = si] = [si = si] ∩ F ⊆ Ki[si = si] ∩ F ⊆ Ki([si = si] ∪ ¬F ) ∩ F =

K̂i([si = si] ∩ F ) = K̂i([ŝi = si]). This shows that (1) holds.
By (11) and axiom KB1,

¬Bi
[
hv

i (s; ti) > hv
i (s)

] ∩ F = ¬B̂i
([

hv
i (s; ti) > hv

i (s)
] ∩ F

)

= ¬B̂i
[
hv

i (ŝ; ti) > hv
i (ŝ)

]

⊆ ¬K̂i
[
hv

i (ŝ; ti) > hv
i (ŝ)

]
. (13)

Thus, for each i,

Rds
i ∩ F ⊆ R̂es

i (14)

where the last event with the hat is i’s rationality as defined in (2) for K̂i . Since Ki satisfies the axioms of distribution,
negative introspection and truth,

R̂es
i = K̂i R̂es

i . (15)

Also for every pair of knowledge and belief operators K and B in a belief structure,

BKE ⊆ KE, (16)

because by negative introspection and KB1, BKE ∩ ¬KE = BKE ∩ K¬KE ⊆ BKE ∩ B¬KE , which by the axioms of distribution
and contradiction is empty.

Now, by (12), (10), the monotonicity of Bi , and (14), F = Bi(Rds)∩ F = B̂i(Rds ∩ F ) ⊆ B̂i(Rds
i ∩ F ) ⊆ B̂i R̂es

i . By (15) and (16),

B̂i R̂es
i = B̂i K̂i R̂es

i ⊆ K̂i R̂es
i = R̂es

i . Thus, for each i, F = R̂es
i , hence F = R̂es and therefore F = ĈKR̂es. By Theorem 1, ĈKR̂es ⊆ Î ,

which completes the proof. �
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Proof of Theorem 4. Let G = CBRdm
i . By Proposition 3 there exists an event Ω̄ which is the world perceived by all players.

Let F = G ∩ Ω̄ . By Monderer and Samet (1989), Dist, and the definition of Ω̄ , for each i, F ⊆ G ⊆ Bi G ⊆ Bi(G ∩ Ω̄) = Bi(F ).
Thus we can apply Lemma 1 to F . By (10), for E ⊆ F , B̂i E = (Bi E) ∩ F ⊆ (Bi E) ∩ Ω̄ . Since Bi((¬Bi E) ∪ E) = Ω , the

minimality of Ω̄ implies that Ω̄ ⊆ (¬Bi E) ∪ E . Thus, (Bi E) ∩ Ω̄ ⊆ (Bi E) ∩ ((¬Bi E) ∪ E) = (Bi E) ∩ E) ⊆ E . We conclude that
for each E ⊆ F , B̂i E ⊆ E , or equivalently, (¬B̂i E) ∪ E = Ω̂ . Thus, K̂i((¬B̂i E) ∪ E) = Ω̂ . This equality with axiom K yields
K̂i B̂i E ⊆ K̂i E . Since by axiom KB2, we have B̂i E ⊆ K̂i B̂i E , we conclude that B̂i E ⊆ K̂i E . The converse inclusion follows from
KB1, and thus, B̂i = K̂i .

The proof that (1) holds for K̂i is the same as in Theorem 3. Using (10) and (11) we conclude that

(
Bi¬Ω v) ∩ F = B̂i

(¬Ω v ∩ F
) = B̂i¬Ω̂ v ,

and

¬Bi
(¬Ω v ∪ [

hv
i (s; ti) > hv

i (s)
]) ∩ F = ¬B̂i

(¬Ω̂ v ∪ [
hv

i (ŝ; ti) > hv
i (ŝ)

])
.

Thus, Rdm
i ∩ F = R̂dm

i . Substituting K̂i for B̂i , yields, Rdm
i ∩ F = R̂em

i . By applying (12) to G , G ⊆ Bi Rdm
i . Therefore, F =

(Bi Rdm
i )∩ F = B̂i(Rdm

i ∩ F ) = B̂i(R̂em
i ) = K̂i(R̂em

i ). Hence, F = CKR̂em
i , and by Theorem 2, F ⊆ Î = I ∩ F . Finally, G ⊆ Bi F ⊆ Bi(I)

for each i. By Monderer and Samet (1989), G , being the common belief of an event, is an evident belief, and the inclusions
G ⊆ Bi(I) imply that G ⊆ CBI . �
Proof of Proposition 3. Let Ωi be the world perceived by i. First, we show that for each i, Ωi = ⋂

E (¬Bi E ∪ E). By axiom
Dist and Claim 2, Bi(

⋂
E (¬Bi E ∪ E)) = Ω. For the minimality, suppose Bi F = Ω . Then,

⋂
E (¬Bi E ∪ E) ⊆ ¬Bi F ∪ F = F .

By distributivity, axiom Con holds if and only if for each i and j, B j(
⋂

E (¬Bi E ∪ E)) = Ω , that is, B j(Ωi) = Ω , which is
equivalent to Ω j ⊆ Ωi . �
Proof of Proposition 4. Let Ω̄i be the world perceived by i. Then, Ω̄i = ⋃

ω bi(ω). Indeed, Bi(
⋃

ω bi(ω)) = Ω and thus
Ω̄i ⊆ ⋃

ω bi(ω). Conversely, since Bi(Ω̄i) = Ω , it follows that for each ω, bi(ω) ⊆ Ω̄i .
Suppose that beliefs are interpersonally consistent, and let Ω̄ be the world perceived by all players. Let p be a probability

function on Ω such that p(ω) > 0 for each ω ∈ Ω̄ , and p(Ω \ Ω̄) = 0. Thus, for each ω and i, p(bi(ω)) > 0. Define for
each i and ω, ti(ω)(·) = p(· | bi(ω)). The probabilistic belief structure (ti)i induces the belief structure. This shows that
(1) implies (2). Obviously, for every probabilistic belief structure (ti)i with a common prior, the types in each state are
equivalent. Thus (2) implies (3). Finally suppose that the belief structure is induced by a probabilistic belief structure (ti)i
with equivalent type functions. Define Ω̄ to be the set of all the states ω such that for some i (and hence for all i) ti(ω) > 0.
Thus, Ω̄ = ⋃

ω bi(ω), and therefore Ω̄ is the world perceived by all players. �
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